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Abstract. The Car-Parrinello molecular dynamics4ensity functional scheme derives reliable 
forces from the energy functional of Kohn and Sham. We describe an alternative approach 
based on a related energy functional that can be assigned a value for any density, specifically 
a superposition of site densities moving with the nuclear sites. ‘In-out’ fluctuations of the 
site densities are described by parameters that are treated as dynamical variables in a 
Lagrangian formulation. An important feature of the scheme is its adaptability with 
respect to the method used to solve the electronic structure part of the problem. Explicit 
calculations for the H2 molecule illustrate how the scheme can be used with the electrons 
described in terms of a localised orbital basis. 

1. General scheme 

Molecular dynamics (MD) simulations have been extremely successful in describing the 
properties of systems of atoms for which the interatomic forces are of the van der 
Waals type and can be modelled in terms of pair interactions. Recently, an MD-density 
functional MD-DF scheme was introduced (Car and Parrinello 1985) that is in principle 
generally valid and derives forces from the Kohn-Sham (1965) energy functional 
E,,[n] at (or very close to) self-consistency. Extensive work has established that this 
functional, with the local-density approximation (LDA) for exchange and correlation, 
describes energy variations in chemically bonded systems with useful accuracy and the 
MD-DF scheme has been applied successfully to treat structural and dynamical bulk 
(amorphous and liquid) and cluster problems (Car and Parrinello 1988, Galli et al 
1989a, b, Hohl et a1 1988). As currently constituted, however, the scheme suffers from 
three interrelated limitations that must be kept in mind. First, the rapidly varying 
electronic degrees of freedom {v i }  with small masses pi, in conjunction with their 
large plane-wave expansion, necessitate an MD time step about one order of magnitude 
smaller than would be necessary in conventional MD calculations with modelled forces. 
Second, the extensive plane-wave basis needed to describe the electronic wavefunctions 
with sufficient accuracy is costly in both CPU and memory (the current practical limit 
seems to be about 100 second- and third-row main group atoms with about 500 
electrons, at which point the cubic scaling of the orthonormalisation procedure with 
basis size dominates the CPU requirement). Third, the pseudopotential-plane-wave 
approach prohibits treatment of systems where a frozen core is inappropriate and/or 
localised d- or f-bonding features are important. 
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In this note, we outline some ideas with regard to a new framework for performing 
MD calculations in systems with chemical interactions that is more flexible than the 
original MD-DF scheme and should be simpler to implement where strong potentials 
are encountered. The new scheme is based on an alternative energy functional E [n] that 
is stationary at the same density as EKs[n] but, unlike this functional, can be assigned 
a value for an arbitrary density, in particular a density constructed by summing 
spherically symmetric site densities centred on the atoms (Harris 1985, Foulkes and 
Haydock). Although conceived initially as an approximation to EKs [n], subsequent 
work has revealed two important properties of E [ n ]  that greatly enhance its value in 
connection with electronic structure calculations. The first property, established via 
explicit calculations, is that the quadratic error made in using E [n] in conjunction with 
a sum over site densities can be remarkably small to the point of being negligible 
(Polatoglou and Methfessel 1988, 1990, Finnis 1990). The second property, conjectured 
by Finnis (1990) on the basis of calculational experience and proved subsequently 
under weak conditions by Zaremba (1990), is that E[n] is maximal at the density nscr 
where E,, [n] is minimal. These two properties imply that maximising E [n] within the 
range of densities obtainable via a sum of site densities is to all intents and purposes 
the same as minimising EKs[n]. 

To understand why the former procedure is in general easier than the latter it is 
necessary to write down the two functionals and to discuss how in practice they are 
evaluated. Although &[n] is a density functional, it can be given a value only for 
densities nout that belong to the ground state of the one-particle Schrodinger equation 
with some potential Ve, and are constructed from the eigenfunctions of this equation. 
If the corresponding eigenvalues are denoted en, we have 

where the a, are occupation numbers, $out (x) is the Coulomb potential associated with 
density nout(x), exc[n] is the LDA exchange-correlation energy density, Vext is the nuclear 
potential and EN the internuclear repulsion. The functional E [n], on the other hand, 
can be defined for an arbitrary density n(x)  and takes the form 

where the eigenvalues Pn are those resulting when the one-particle Schrodinger equation 
is solved with the potential 

the Coulomb potential $(x) is that corresponding to n(x)  and pXc[n(x)]  is the LDA 
exchange4orrelation potential. To evaluate E [ n ]  for given n(x),  it is necessary only to 
calculate the eigenvalues for a specific one-particle potential. The eigenvectors do not 
appear explicitly in the energy expression and, in particular, the Coulomb potential 
corresponding to these eigenvectors need not be calculated. This is computationally 
of some importance if the one-particle equation is solved using a localised or partially 
localised basis. 
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To perform an electronic structure calculation using equation (l), one begins with a 
potential, solves the Schrodinger equation to obtain the density nout evaluates the corre- 
sponding Coulomb and exchange-correlation potentials and cycles to self-consistency 
using the Kohn-Sham self-consistency condition that is satisfied at the minimum of 
the functional. An alternative self-consistency procedure, most advantageous within 
the framework of pseudopotential-plane-wave calculations, is iterative minimisation 
(‘propagation in imaginary time’) with the constraint of orthonormality on the one- 
particle eigenfunctions vfl : 

+,,(r, t )  = - 6 E K s / 6 y f l * ( r ,  t )  + constraints = --Hvfl(r, t )  + constraints (4) 

which allows FFT methods to be exploited to their fullest extent (Stich et a1 1989). In 
this especially favourable framework, the solution of Poisson’s equation for the density 
nout is straightforward. Where a plane-wave basis is inappropriate, however, this step 
is computationally awkward and CPU intensive. 

An alternative procedure using equation (2) and making use of the properties of this 
functional mentioned above is to work with trial densities characterised by parameters 
Di.  The simplest and probably most appropriate prescription for constructing a trial 
density is that of Finnis, who superposed neutral atom densities with each site density 
multiplied by a function that allows ‘in-out’ variation. Finnis used a Fermi function 
with two parameters per site. While we shall assume throughout this paper that one 
parameter only per site is sufficient, this is in no sense a restriction and as much 
variational freedom can be built in as is commensurate with the problem at hand 
(e.g. for some applications it may be necessary to include on-site polarisation functions 
that describe site-localised deviations from spherical symmetry.) Starting with a guess 
for the parameters Di,  the potential in equation (3) is constructed, the Schrodinger 
equation solved and the function E [ { D i } ]  evaluated. The derivative of E [ { D , } ]  with 
respect to each Di is 

where nout(x) is the density generated by the solution of the Schrodinger equation 
with potential V { D i l ( ~ ) ,  given in terms of the trial density by equation (3). With the 
aid of these forces, the maximum of E [ { D , ) ]  can be found readily using, for example, 
conjugate gradient met hods. 

Since the trial density has restricted freedom this procedure will not generate the 
exact minimum of E,, [n] .  However, explicit calculations for aluminium films (Finnis 
1990) and for bulk silicon and carbon (Polatoglou and Methfessel 1988, 1990) showed 
that a limited variation in the site densities was sufficient to give a negligible error 
(even though the deviations of the trial density from the self-consistent density were in 
no sense negligible). We expect this to be true in general, and note that the magnitude 
of the likely error in a specific application can be determined via control calculations 
with increased variational freedom. As mentioned above, the evaluation of the energy 
E [ { D , } ]  as well the forces in equation ( 5 )  does not require the solution of Poisson’s 
equation for the density nout(x). The Coulomb potential corresponding to n( , i ) (x)  is 
needed, but this is trivially evaluated as a sum over sites because the relation between 
n and 4 is linear. This is not true of the exchange-correlation potential, but this is 
local so that all contributions to the forces in equation ( 5 )  involve only single space 
integrals with well localised integrands. 
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MD calculations can be performed with the aid of the functional E [ { D , } ]  by 
treating the site-density parameters as dynamical variables with which are associated 
small negatioe masses -MO, The appropriate Lagrangian is then 

y[{&}, {&, { D , } ,  { d , } ]  = 1 z [ M , R t  -MD,D: ]  - E [ { & } ,  { D , } ] .  (6 )  
I 

and the corresponding equations of motion are 

M,R, = -VR,E MDLD,  = BE/BD,. (7)  
For small mass ratios MD,/Ml ,  the forces on the D, will act so as to drive them 
continuously towards the maximum of E .  If a simulation is started with optimal (or 
‘adiabatic’) D,-values, corresponding to the maximum of E [ { D , } ]  for the corresponding 
nuclear coordinates, the D,(t) will tend to oscillate on a short time scale about their 
local adiabatic values. For suitably chosen masses, the oscillations and the kinetic 
energy of the D, motion can be kept small over periods long compared with typical 
MD-averaging times so that the forces acting on the nuclei will be at all times close 
to those that would obtain if the energy functional were maximised (approximately 
equivalent to the Kohn-Sham functional being minimised) in each time step (‘adiabatic’ 
dynamics). 

Propagation using equation (7) requires calculation of the forces on the nuclei for 
fixed values of the D,.  On differentiating equation (2) with respect to nuclear coordinate 
R I ,  one can express these forces as the sum of three terms, 

Here @iD,}(R;) is the net electrostatic potential at Ri due to the ions and the trial 
density n { D c } ( x ) ;  so the first term in equation (8) gives a Hellman-Feynman-like force 
on nucleus i. Note that this is to be evaluated with the trial density, and not with the 
output density noutr and is simply a sum of repulsive pair interactions involving the net 
electrostatic potentials corresponding to the site densities. Thus the Hellman-Feynman 
contribution to the forces involves, at worst, one-dimensional integrals and a sum 
over a limited number of neighbours. The second term in equation (8) requires in 
general three-dimensional integrals over a region localised about site i with integrand 
proportional to the difference between the trial density n { D z } ( ~ )  and the density nout(x) 
that results from the solution of the Schrodinger equation. The third term Fbasis, gives 
the so-called ‘Pulay-forces’ which devolve from any explicit dependence on the nuclear 
coordinates that the basis used to solve this equation may have. If the basis has no such 
dependence (as is the case for plane waves in a box), this term is zero. If the trial density 
happens to coincide with the self-consistent density nsc, then nout does also, the second 
term in equation (8) is zero and one is left with the usual Hellman-Feynman theorem 
for the forces. As is well known, this result is useful only when the self-consistent 
density, including all effects due to core polarisation, is determined very accurately, 
which in practice is hardly ever the case. The force formula in equation (8), however, 
includes explicitly all deviations of the trial density from the self-consistent density 
and is merely the formal gradient of the energy expression, equation (2), provided 
only that the density nout is expressed in terms of the basis functions used to solve 
the Schrodinger equation so that basis errors in energy and force are the same. The 
force formula is modified only trivially if a frozen core is used, or the ion cores are 
represented by pseudopotentials. 
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2. Application to the H, molecule 

We now demonstrate how the ideas outlined above work out in practice via explicit 
calculations treating the vibration of the protons in an H, molecule. Although this is 
an essentially trivial application having only illustrative value, the system does have a 
singular potential, which in the present calculation did not have to be replaced by a 
pseudopotential (Buda et a1 1989). When a localised basis is used, the computations 
required to determine the proton dynamics can be performed on a personal computer. 
As a family of trial site densities we choose exponentials with exponent D, = D, = A 
as the dynamical variable discussed above (equations (5)-(8)) : 

To determine theeigenvalue we use the usual variable-exponent LCAO form for the H, 
lo, orbital: 

where S is the overlap integral. The energy expression, equation (2), then takes the 
form 

E[d,A] = 2min,((m I ? + V, 1 a))  

where d = IR, - R,( is the interproton separation. The best estimate of the adiabatic 
energy obtainable within the restriction of the density variation and orbital basis is 
then 

E,,(d) = max,(E [d, A]). (12) 

This is shown in figure l (a)  and is extremely close to the correct Kohn-Sham-LDA H, 
binding energy curve (Gunnarsson and Johansson 1976). The energy zero in figure l a )  
refers to a calculation with a proton separation d of 10 au and with a spin correction 
included to take account of the energy lowering in the spin-uncompensated atomic 
state. The corresponding value of 4.78 eV for the well depth is very close to the 
experimental value of 4.74 eV. The parametrisation given by Vosko et a1 (1980) was 
used for the exchange-correlation energy and potential and its dependence on the spin 
polarisation. In the molecular ground-state configuration, the spin polarisation is of 
course zero. Figure l (b)  shows the variation in E[d,A] with respect to A for d = 1.44 au 
and illustrates the maximum principle obeyed by the functional in equation (11). The 
arrows on the energy curves give the gradients of the energy as determined by the force 
formulae, equations (8) and ( 5 )  for figures l (a)  and l(b) respectively and illustrate that 
these formulae do give the correct derivatives of the energy functional, including the 
basis error. The forces in figure 1 (a) include explicitly the ‘Pulay’ or ‘basis’ terms, which 
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Figure 1. (a) Binding energy curve of H2 as given by equation (11). The arrows denote 
the gradient of the energy curve as determined by the force formula, equation (8). ( b )  
Dependence of E[d,,J.] on 1 for d = 1.44 au The arrows denote the gradient as determined 
by the force formula, equation (5 ) .  

are of the same order of magnitude as the other terms and are therefore vital to a 
proper force calculation. 

The adiabatic motion of the protons can be described in a number of ways. The 
most direct is to perform the maximisation in equation (12) to determine the energy 
and forces in each MD time step. This is of course straightforward in the present case 
but inefficient in general when the maximisation involves many parameters rather than 
one. By treating the parameter as a dynamical variable in a Lagrangian of the form 
of equation (6)  with an appropriate mass, the maximisation step can be eliminated. 
Figure 2(a)  shows results of a dynamical simulation performed using the equations 
of motion (7), with masses Md = MJ2, where Mp is the physical proton mass, and 
MA = O.OOIMd, for the relative vibrational coordinate d and the density parameter 1, 
respectively. The trajectory was propagated using the standard Verlet algorithm with a 
time step At = 5.0 au, about 0.015 times the vibrational period and corresponding to a 
change in d of about 0.04 au per time step when the protons are travelling at maximum 
velocity. The simulation was started with the nuclei at  rest and separated by 2.0 au, 
so that the potential energy was 0.77 eV with respect to the well minimum, and the 
1 coordinate set equal to its adiabatic value (2.17 au) for which the energy, equation 
(l l) ,  at a separation of d = 2.0 au is maximal. Figure 2(a) shows the nuclear kinetic 
energy T (in eV), the internuclear separation d and the value of the density parameter 
A (in au) as a function of time for the subsequent motion through two vibrational 
periods. The variation in A was found to correspond very closely to adiabaticity 
(i.e. 1( t )  N A,,, [ d ( t ) ] ,  where I,,, [dl maximises the energy in equation (1 1) for proton 
separation d) so that the forces acting on the protons were at all times very close to the 
derivative of the ground-state energy curve in figure l(a). The kinetic energy associated 
with the I-coordinate oscillated within the range from -0.15 to 0 meV, compared 
with the maximum value of the nuclear kinetic energy of 0.77 eV. The simulation was 
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Figure 2. Simulation of the oscillation of the two protons in an Hz molecule as given by 
the classical equations of motion, equation (6). The simulations were started at d = 2.0 au 
and run for two vibrational periods. The lowest curve gives the kinetic energy T of the 
protons. The upper curves give the values of d( t )  and I ( t )  (au) in (a) and (b) and a@), d( t )  
and L ( t )  in (c). In (a) and (b) only I was treated dynamically with the minimisation with 
respect to a (equation (11)) carried out explicitly in each time step. In (c), both 1 and a 
were treated dynamically using the potential function, equation (13). The time step was 5.0 
au The simulations in (a) and ( c )  were started adiabatically and remained very close to 
adiabatic throughout. The simulation in (b) was started with I far from its adiabatic value 
and adiabaticity was established via an initial quench. 

continued for a total of ten vibrational periods during which each atom moved by 
about 9 au with no detectable drift in the kinetic energy of the A-subsystem. This 
indicates that with the given choice of relative mass MAIMd,  heating of the A-subsystem 
was minimal so that ‘quenches’ of A to the electronic ground state will be necessary 
only after periods of time comparable with or longer than typical MD averaging times. 
Near-adiabatic dynamics was found for values of MAIMd in the range 0.001-0.05 and 
will occur in general provided that the mass ratio and the coupling are small and the 
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‘natural frequencies’ of the auxiliary variables wD, (e.g. w1 is governed by MA and the 
force constant ( about 0.13 au) characterising the energy variation shown in figure l(b)) 
are much larger than those of the nuclear motion. For linearly coupled oscillators with 
frequencies mi,, wd, for example, the non-adiabaticity of the low-frequency oscillation 
(ad) is determined to lowest order in the coupling by the parameter 

This parameter can, of course, be made arbitrarily small by decreasing MA, but only 
at the expense of introducing high-frequency motion in the trajectory, which, although 
it has only a small amplitude, must be integrated correctly. In practice, therefore, it 
is most efficient to choose as large a mass as is commensurate with the required level 
of adiabaticity. The range quoted above for MA corresponds to 1.5 eV < mi. < 10 eV 
compared with wd N 0.5 eV. 

Figure 2(b) shows the results of a simulation where initial adiabaticity was es- 
tablished dynamically by starting with small At and quenching until the A-coordinate 
settles down and its kinetic energy stabilises at a small value (‘simulated annealing’). 
The initial value of A was in this case 2.5 au, the adiabatic value for separation d = 1.1 
au and at the extreme of the range encountered in the simulation. As can be seen, 
a rapid quench established near adiabaticity and the subsequent motion was close to 
adiabatic, although the A-coordinate displayed a weak tendency to overshoot. How- 
ever, the kinetic energy of the A-coordinate was again extremely small and the nuclear 
motion was virtually indistinguishable from that in figure 2(a). It was found important 
to perform a rather thorough quench and attempts to increase the time step with the 
system too far from adiabaticity resulted in instability. In general, one would expect an 
initial non-dynamic determination of starting values, to be preferable. The feasibility 
of such an approach depends on the local structure of E in the {Di} subspace and the 
possible existence of local maxima with comparable weight. 

In the simulations shown in figures 2(a) and (b) ,  the eigenvalue problem was solved 
extrinsically to the dynamics by performing the minimisation of the expectation value 
in equation (1 1) with respect to the orbital exponent a explicitly in each time step. The 
‘flair’ of the MD-DF scheme is that this minimisation is effectively incorporated in the 
dynamics. Within the present approach, a fully dynamical treatment of the problem 
- the equivalent of the MD-DF scheme with a localised basis - can be carried out 
by treating the orbital exponent in equation (10) as a dynamical variable analogous 
to 1. This can be assigned a positive mass and the propagation carried out with an 
appropriately extended Lagrangian having a potential energy function 

E [a, d, A] = 2(a I f + Vn I a) 

and an additional kinetic energy term. Figure 2(c) shows the results of a simulation 
carried out in this fashion with both a and 1 set initially at their adiabatic values. As 
can be seen, the nuclear motion is virtually indistinguishable from that of figures 2(a) 
and 2(b), demonstrating that, for the H, problem at least, the entire electronic structure 
part of the calculation can be dealt with dynamically with no reduction in the time 
step. Where feasible, this approach is clearly the most efficient because it requires just 
a single force calculation per MD time step (as against the two or three necessary to 
perform an a-minimisation). However, the adiabaticity achieved in figure 2(c), although 
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entirely adequate, was an order of magnitude worse than in figure 2(a) because the 
force constants governing the a-motion are large and a relatively large mass M ,  was 
needed in conjunction with the time step At of 5 au. The mass parameters used in the 
simulation shown in figure 2(c) were M ,  = 0.05Md and M A  = O.o01Md, corresponding 
to o,,wL E 5 and 10 eV, respectively. The kinetic energy of the a-A-system displayed 
oscillations on a time scale of about w;l, on’ superimposed on an envelope oscillation 
between zero (when the protons approached a turning point) and some maximum value 
T,,, (when the protons were moving most rapidly). For the time span shown in figure 
2(c), T,,, was about 2 meV. However, as the simulation was allowed to proceed, T,,, 
increased approximately linearly with each oscillation and was about 6 meV (about 
1% of the nuclear kinetic energy) after ten round trips, at which point a stabilisation 
of the trajectory (via re-optimisation or quench) became desirable. This drift could be 
due to interference between the a- and A-oscillations and was not present when masses 
M ,  = 0.02Md and M ,  = 0.015Md, corresponding to better separated natural frequencies 
w,,o, N 8.2 and 2.6 eV, were used. With this parameter choice, the ‘minimisation’ 
of E [a, d ,  A] with respect to a occurs on a substantially shorter time scale than the 
maximisation with respect to A ;  so the propagation conditions approach more closely 
those in the A-only simulations using the energy function in equation (11). With a time 
step At of 5 au this simulation gave T,,, N 3.0 meV (and an average kinetic energy 
for the a-A system of about 0.5 meV) and showed no sign of instability or drift over 
10 cycles. This behaviour occurs only over a rather limited range of mass parameters, 
however, which suggests that, in applications with many dynamical variables some 
of which influence the energy strongly, it may prove difficult to find a tuning of the 
corresponding mass parameters that allows propagation over long periods of time with 
a large time step. A second limitation that must be borne in mind in connection with 
a fully dynamical treatment of systems with more than one electron level is the need 
to impose the Pauli principle via additional constraints. 

Because of these limitations, and depending on the system under study, it may be 
preferable to calculate the eigenvalue sum explicitly using standard methods and to 
restrict the dynamical degrees of freedom to the density variables, as in equation (6). 
In all applications to date, the dependence of the energy on these variables has been 
found to be quite weak; so one would expect in general that small masses and large 
time steps can be used. In essence, this procedure amounts to decoupling eigenvalue 
determination and ‘self-consistency’ from each other, with the latter part of the problem 
dealt with dynamically. The former part amounts only to the solution of an eigenvalue 
problem for a fixed potential. This decoupling introduces considerable flexibility and at 
least one of the snags encountered when formulating the MD-DF scheme in a localised 
basis (Gillan and Madden 1988), namely the need to solve Poisson’s equation for 
the ‘output’ density of the electronic structure calculation, is eliminated. This density 
is needed only to perform the single space integrals that determine the energy and 
the forces. Clearly, however, the CPU requirement of the scheme will in general be 
dominated by the method employed to solve the eigenvalue problem with adequate 
accuracy. We are currently exploring ways of applying the scheme to a large system 
and shall report on the results in a future publication. 
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